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Surface and Corner Magnetizations in the 
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We study the anisotropic Ising model on a square lattice with free boundary 
conditions. A simple explicit result is obtained for the surface magnetization of a 
system which is inhomogeneous near the surface. The corner magnetization is 
investigated for a 90 ~ corner in a homogeneous anisotropic system. From the 
numerical results an analytical formula is found. 
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1. I N T R O D U C T I O N  

Ordering phenomena near boundaries have been the subject of numerous 
studies (see ref. 1 for a review). Some particular problems, however, have 
been investigated only in recent years. One is the case of a system which is 
inhomogeneous near the boundary and gradually becomes uniform as one 
moves into the interior. Another is the case of boundaries with edges or 
corners. Both situations were mainly studied in two dimensions. 

The case of the inhomogeneous system was first investigated by 
Hilhorst and van Leeuwen (2) and later in more detail by B16te, Hilhorst, 
and others. (3-s) They considered planar Ising models where some of the 
couplings approach their bulk values as a power law n Y, where n is the 
distance from the straight boundary. General renormalization group 
arguments show that nonuniversal surface exponents can appear if v . y  = 1, 
where v is the bulk correlation exponent. (6'v) This was indeed found in the 
analytical calculations which included surface correlations and the surface 
magnetization. These calculations, however, used a continuum limit and, 
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on the whole, were rather involved. We will show here that it is actually 
very simple to obtain the surface magnetization m~ in arbitrary layered 
Ising models. This generalizes an observation made before in the extreme 
anisotropic (Hamiltonian) limit/8) It  allows us to calculate and discuss m s 
for various cases and all temperatures. 

The corner problem was first posed by Cardy ~9) and studied for the 
two-dimensional ]sing model by Barberetal/1~ It  turned out that the 
exponent /~c of the corner magnetization mc depends on the angle 0 at 
the corner and, in general, also on the anisotropy of the lattice. At the 
same time it was realized that the angle dependence follows from conformal 
invariance/1~ Analytical calculations so far have been done only for 
special cases of square lattices/1~ In the present paper we present the 
method and the results for a 90 ~ corner in a general anisotropic square 
lattice with edges along the directions of the bonds. Although the final 
steps of the calculation were done numerically, we were able to infer an 
analytical formula for mc from the data. This provides the general answer 
to this problem. 

Our treatment is based on a suitable row-to-row transfer matrix and 
its eigenfunctions. The diagonalization procedure is known in principle but 
it is important to bring the equations into a convenient form. This is done 
in the following section, with the emphasis on a clear and simple presen- 
tation. We calculate the surface and corner magnetizations in the following 
sections and draw our conclusions. 

2. T R A N S F E R  M A T R I X  

We consider the square lattice shown in Fig. 1 with free boundary 
conditions along all edges. The vertical couplings K1 =/~J1 are taken to be 
uniform, while the horizontal ones can vary from column to column, K 2 = 
K2(n), corresponding to a layered system. Our tool will be the symmetrized 
row-to-row transfer matrix 

where 2 

W = V m V2 V~/2 (2.1) 

n = l  

1 

V2 = exp K2(n) ~r~a~+ 1 (2.3) 
n 1 

2 Note that refs. 13 and 19 have a minus sign in the exponent of V 1. Their results are obtained 
from ours by letting K* ~ --KI*. 
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Fig. 1. Geometry of the square lattice and definition of the coupling constants. 

The a~ are Pauli matrices and K* denotes the dual coupling of K 1, 
tanh K* = exp(-2K1). The homogeneous problem was already studied by 
Abraham, ~13) who used Kaufman's spinor technique ~14) to diagonalize the 
related transfer matrix V = V~/2 V1 V~/2. Both W and V have the same eigen- 
values but their eigenvectors differ. We work with W because only W 
allows a simple calculation Of the corner magnetization. In the following we 
use the standard fermion techniques of Lieb, Schultz, and Mattis (LSM) ('5) 
and follow their notation closely. 

Introducing Fermi operators cn, c,* via the Jordan-Wigner transfor- 
mation gives 

g l = e x  p K* ~ (2c~c.-1)  (2.4) 
n = l  

V2 =exp K2(n)(c*.-c.)(c2+l+C.+l) (2.5) 
n 1 

It is then easy to obtain the Heisenberg operators W c . W  -~ from an 
equation-of-motion technique. Introducing the vector e=(c~, c2 ..... cN), 
one has 

W c W - I =  Me+ Ne* (2.6) 

W c t W  -1 = [91c* + N'c (2.7) 
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The N x N matrices M, M, N are tridiagonal and are given explicitly in the 
appendix�9 New Fermi operators are then introduced via the Bogoliubov 
transformation 

N 
O~k= ~ [gk(J) cj+hk(j) CJ] (2.8) 

j=l 
such that 

W= exp I -  ~ ek(a~ak-- �89 1 (2.9) 

is diagonal in the a's. Choosing ek >~ 0, the vacuum of the ~'s gives the 
largest eigenvalue of W. Equations (2.6) and (2.7) determine W only up to 
a multiplicative constant. It was fixed in (2.9) by demanding that the 
diagonal form of W lead to the same trace of In W as (2.1) (see ref. 15). 
From (2.9) one has Wc~k W -1=  exp(~)-c~. Inserting here (2.8) and using 
(2.6) and (2.7) leads to the matrix equations 

Mgk + Nhk = e~kgk (2.10) 

IQlh k + N'g k = eekhk (2.11 ) 

with the (column) vector gk = (gk(1), gk(2) ..... gk(N)) and similarly for hk. 
Equations (2.10) and (2.11) determine the canonical transformation 

(2.8) and the single-fermion eigenvalues ek" It is more convenient, however, 
to introduce the quantities (normalized to one) 

dOk=gk+hk; ~ = g k - - h k  (2.12) 

By forming proper linear combinations of the equations, one can transform 
them into a pair of matrix equations for ~b k and ~k where all matrices are 
bidiagonal. They read (omitting the index k) 

". " 

a2 . .  c2 
* a 

�9 . . .  .. 

aN--  1 b N -  CA'- 1 

a o ! 

f )() �9 a N _ l  �9 b m  1 

~- {d~.  c I , ... 

"".dN" "~ 

Co 
(2.13) 

(2.14) 
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with the coefficients 

aj=Sl(C2(j)+e~), bj=C, S2(j) 

@=dl(C2(j)+e'), dj=SiS2(j) 

where C l=cOshK *, S l=s inhK* ,  C2(j)=cosh2K2(j), S2(j)=sinh2K2(j), 
and K2(0 ) = 0. 

These are our basic equations, which will be used in the following sec- 
tions. Before doing that, however, let us compare them with the formulas of 
the Hamiltonian limit of large vertical and small horizontal couplings, i.e., 
K*, K2 "~ 1. Then one can pull the three exponentials in (2.1) together, thus 
obtaining a single quadratic form of Fermi operators in the exponent. 
Diagonalizing this form directly leads to simpler equations. In the notation 
of LSM they read 

(A+ B)~p = ~ ;  ( A -  B)V=a  ~ (2.15) 

Here (A __+ B) are also bidiagonal and the eigenvalue ~ only appears on the 
right-hand sides. These equations also follow from (2.13) and (2.14) if one 
treats e, KI*, and K2(j) as small quantities and keeps only first-order terms. 
This is a useful check for our calculations. At the same time we see how the 
general case differs from the Hamiltonian limit. 

3. SURFACE MAGNETIZATION 

In the Ising model the surface magnetization m s is, from a technical 
point of view, the simplest order parameter. It can be obtained from the 
large-distance limit of the spin correlation function in the surface. (8'13) 
Choosing the left boundary in Fig. 1 and writing the correlation function in 
terms of W and its spectral representation gives 

ms=  (11 V11/2(7~Vll/2 I 0 )  ~ C l ( l l  o] c 10) (3.1) 

Here [0) and ]1 ) are the eigenstates of W corresponding to the largest and 
next to largest eigenvalues, respectively. The result (3.1) strictly holds only 
in the limit N---, o% where these two eigenvalues become degenerate. In 
terms of fermions, 10) is the c~ vacuum and 11 ) has the fermion state with 
the lowest single-particle eigenvalue e occupied. Denoting this state by p, 
one has I1 ) =  s t  10) and the quantity ep goes to zero as N ~ oo (below the 
critical temperature). 

Using the form of IO) and I1 ) and expressing cr]' = (c~ + cl) in terms of 
the e's, one finds 

ms = (~1' ~bp(1) (3.2) 
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Thus, one only needs the particular fermion state p to calculate m,. The 
nature of th iss ta te  is known for the homogeneous system (8'13) and for 
related problems like the X Y  spin chain. (15) There it is found that for the 
state p, ~bp is localized near the left and 0p near the right boundary within a 
localization length which diverges at the critical point. We now look for the 
analogous solution in the general inhomogeneous case. 

For that purpose we let N ~  oo and look for a solution of (2.13), 
(2.14) with e=0 ,  near the left boundary. With e = 0  one has Co=0 and, 
from (2.14), ~tp(1)= 0. Using this in (2.13) gives Op(2)= 0. In this way one 
finds that Op(n)=0 for all n, while ~bp(n) is determined from (2.13) with the 
right-hand side set equal to zero. The resulting equation can be written as 

with 

(1 ) 1 = 0  (3.3) 

tanh K2(n ) 
2, = (3.4) 

tanh K* 

This simple one-step recursion relation for ~p(n) is our basic result. For 
K*, K2(n ) ~ 1 the hyperbolic tangents disappear and the Hamiltonian limit 
of the problem (8/ is recovered. Of course, only such solutions of (3.3) 
are relevant which can be normalized. These appear below the critical 
temperature, and m s is then given by 

(3.5) 

This formula determines m, for arbitrary coupling constants Kz(n ). 
The simplest case is the homogeneous system with 2, = 2. Then (~p(n) 

decays exponentially into the interior, q~p(n)~). -n for K2>K*,  i.e., for 
T<  T c, and one finds the result of McCoy and Wu, (16) 

= (cosh_2K2~cosh 2K*'] 1/2 
ms \ eosh2K 2 -  1 J (3.6) 

This gives the surface critical exponent f l ,=  1/2, independent of the 
anisotropy. For fixed anisotropy, the value of m s is larger if the strong 
couplings are in the surface rather than perpendicular to it. 

We now turn to the model of Hilhorst et al. Here the couplings are 
taken to be K2(n)=K2(1 +an -y) and thus approach their bulk limit K2 
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(which still determines To) as a power law. As in the homogeneous case, 
the function Op(n) will extend a long way into the bulk if one is close to the 
critical temperature. Its normalization and thus ms will therefore be deter- 
mined essentially by values n >> 1. In this region one can expand tanh K2(n) 
to obtain 

2, ~- 2(1 +bn -y) (3.7) 

with 

2K~ 
b=a (3.8) 

sinh 2K~ 

where K~ is the critical value of K2. The analysis of ref. 8 can then be taken 
over. In particular, (~p(n) varies a s  n-b)~ - "  for y =  1 and large n. This 
exponential decay modified by a power law leads to a critical exponent 

fls= �89 (3.9) 

which varies continuously with b. Equation (3.9) is the result found by 
B16te and Hilhorst (3) in a different way. 

Outside the critical region, m s has to be calculated numerically from 
(3.5). Results for an isotropic bulk system and y = 1 are shown in Fig. 2. 

m s  

Fig. 2. 
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The curve for a = 0 corresponds to the homogeneous system, Eq. (3.6). The 
general behavior of m s is easily understood on physical grounds. In par- 
ticular, ms is smaller (larger) than in the homogeneous case if the couplings 
near the surface are reduced (enhanced). The values of the exponent/~s are 
consistent with this feature. For  b > 1/2, i.e., if the couplings near the 
surface are sufficiently enhanced, m, stays finite as one approaches Tc 
from below. 

With (3.5) one can also investigate the effects of anisotropy in the 
bulk. In general, one finds the same feature as in the homogeneous system: 
m, is larger if the strong couplings are those along the surface. This may be 
understood by viewing the system as an assembly of chains (17) parallel to 
the surface. These chains show strong fluctuations and need only a small 
interchain coupling to become well ordered. The end spins of chains which 
are perpendicular to the surface generally show less order. An exception 
occurs only close to Tc and for a < 0, as shown in Fig. 3. The reduced 
couplings K2(n) near the surface here give a power fls < 1/2 if/s < K1. On 
the other hand, for K 2 >> 1, fl, = 1/2, so that m~ rises faster below T c in this 
case. Actually, for / (2  >> 1 one has tanh K2(n) - 1 for all bonds except a few 
ones near the surface. This modification does not change the exponent of 
the homogeneous system, which explains the value fl~ = 1/2 in this case. 
In fact, the curve for K2/Ka = 100 in Fig. 3 can practically be reproduced 
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by a model where only K2(1 ) is different from all the other couplings 
K2(n)= K2. 

Finally, we note that similar effects will happen in a system where the 
coupling constants Km(n ) vary with distance from the surface. A calculation 
with a modified KI(1 ) only was done by Au-Yang. (is) 

4. C O R N E R  M A G N E T I Z A T I O N  

We now turn to the corners of the lattice in Fig. 1. The magnetization 
mc can be obtained from the correlation function of two corner spins in the 
limit M, N ~  oc. (1~ Working with the two left corners, this correlation 
function can be expressed as 

F= ( B] ~ Vll/2WMVll/2cT~ [B ) 
(B[ Vll/2WMVI 1/2 IB) (4 .1 )  

Here the state vector ]B) describes the free summation over the boundary 
spins in the top and bottom rows: 

N 

= I - [  1~,~ = 1 ) (4.2) 
r t = l  

Using the form of V1 and the eigenvectors of W, this leads to 

mc=eX; (11 a~' [B) (4.3) 
(01B) 

which is our starting point. Repeating the steps of ref. 10, one obtains 

with 

mc=e K~ ~bp(1) + ~ (bq(1)fql (4.4) 
L q 

(1[ ~q IB) 
fq= ( 0 I B )  (4.5) 

Here p again denotes the surface state and q labels all the other single- 
fermion eigenstates. The essential point is that the matrix elements fq can 
be obtained from the system of linear equations 

~fqhq(n) = -gp(n) ;  n = 1, 2 ..... N (4.6) 
q 
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with g and h introduced in (2.8), and related to ~b, ~h via (2.12). Thus, one 
has to find all ~b and ~, solve (4.6), and calculate m c from (4.4). 

So far the formulation has been completely general. We now specialize 
to a homogeneous lattice with K2(n)= K2. In this case the functions ~b, ~h 
can be found analytically, as in the Hamiltonian limit. The algebra, 
however, is more involved because one has to work with the relations in 
the hyperbolic triangle. (21) The functions ~b and ~ can be taken to be real 
and have the form 

~ q ( n )  = C q [ C O s ( q n ) -  flq sin(qn)] (4.7) 

and similarly for Oq(n). Here Cq is a normalization factor and flq is given 
explicitly in the Appendix. The inner equations of the linear systems (2.13), 
(2.14) then lead to the well-known dispersion relation (19) 

c o s h  eq = C I  C 2 -~- S 1 S  2 cos  q (4.8) 

where S~ = sinh 2K1", C1 = cosh 2K*. The first and last equations determine 
the allowed q values and the coefficient flq. The selection rule for the q 
values can be written 

e2iq N = C 1 S  2 Jr S 1 C 2 cos  q - iS1 sin q 

C1 $2 + $1 C2 cos q + iS, sin q 

= e 2i6(q) (4.9) 

which is equivalent to the results of Abraham. (13) The angle 6(q) [which is 
related to his quantity 6*(q) via 6 (q)=  - 6 " ( 7 t - q ) ]  lies between 0 and 
- r t / 2  for T < Tc and vanishes for q = 0 and q = re. The surface state can be 
obtained from these relations by the substitution q ~ ~ + ip. The reflection 
symmetry of the lattice under n ~ N + 1 - n leads to 

~b(n) = _+~h(N+ 1 - n) (4.10) 

and, therefore, to two classes of eigenstates. As in the Hamiltonian limit, 
only the states with symmetric functions g and h enter into (4.6). Therefore, 
Eq. (4.6) only consists of N/2 equations for N/2 quantities fq, the other f ' s  
being zero. 

We have solved (4.6) numerically for finite N and then obtained me. 
The necessary size, for a given accuracy, depends on the temperature and 
the anisotropy. It increases as one comes closer to T c. For an isotropic 
system and T~< 0.5To, one only needs N~< 8 to obtain a four-digit accuracy 
in me. Up to T = 0 . 9 5 T  c, N~< 120 is sufficient. If the vertical couplings K~ 
become very small, however, the necessary size increases considerably. In a 
sense, one is then working in the wrong representation. Now, since the cor- 
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ner magnetization is invariant under the interchange K1 ~ K2, one does 
not have to treat both cases K 1 < K 2 and Kt > K2. However, it is an impor- 
tant check that the numerical results actually coincide for both cases. 
Another check was the agreement of the data for an isotropic system with 
previous results based on a decimation method and the star-triangle 
transformation.(m) 

The results are shown in Fig. 4. First, we note that the critical 
exponent is tic--1 for all anisotropies. This is what one expects since a 
rescaling can make the system isotropic without changing the 90 ~ angle at 
this type of corner (1~ and for isotropic systems, tic-- 1 is well established. 
Second, rnc increases with the anisotropy, for fixed T / T  e. This may be 
understood in terms of a picture of coupled chains, as in Section 3. 
Actually, the same effect appears in the bulk magnetization given by 
Onsager's formula (2~ 

m B = (1 - k 2 )  1/8 (4.11) 

where k ~ = sinh 2K~ - sinh 2/(2. We see here that the feature exists even at 
the corners, i.e., the ends of the outermost chains. 

One would expect that a simple formula like (4.11) also exists for m~. 
In the Hamiltonian limit this is the case. Based on numerical and analytical 
results the law 

rn ~ = 1 - K ~ ' / K  2 ; K*, K2 "~ 1 (4.12) 
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Fig. 4. Corner magnetization m~ at a 90 ~ corner of a square lattice for various anisotropies. 
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was found. We therefore looked for an analytical formula to describe the 
general case. Indeed, we have found that the simple expression 

mc = 1 -  l(coth K 1 -  1)(coth K 2 -  1) (4.13) 

reproduces all the numerical data to at least five decimal places. Moreover, 
it reduces to (4.12) in the Hamiltonian limit. Therefore, we have no doubts 
that (4.13) is the exact result and represents the corner analogue of 
Onsager's bulk magnetization formula. An explicit derivation is, of course, 
still desirable. Note that it is not the Onsager parameter k which enters 
into the expression for mc. 

4. CONCLUSION 

We have studied various boundary effects in an Ising square lattice 
using the row-to-row transfer matrix. For the surface magnetization we 
derived and applied a simple, explicit, and general expression. The solution 
of the corner problem was also given, but here a complete analytical 
derivation of the final result is still lacking. It could be that a different 
mathematical technique is needed here. One can also study corners in the 
square lattice where the edges are along the diagonals of the lattice (12) or 
corners in a triangular lattice. There the corner magnetization will show 
even more interesting behavior, but the transfer matrix is more com- 
plicated. 

APPENDIX 
The matrices in Eqs. (2.6), (2.7) are 

I 
1 + C2(1 ) 
-s2(1) 

M =-1 e_2K, 
2 

-&O) . - t 
C2(1) + C2(2) - $2(2) �9 

-$2(2) ' .  C2(2)+C2(3) ' - .  

�9 " " ' "  "' -&(N-I)  
- $ 2 ( N - 1 ) "  1 + C 2 ( N - 1 ) /  

1-c2(1) -&(1) .  \ 
l /  S2(1) 0 ' " . .  ) N 
2 ~  "" . " 0 " " - S 2 ( N -  1) 

\ " S2(N-- 1) C2(N-- 1 ) -  1 

I~ is obtained from M by changing exp(--2K*)-+exp(2K*) 
--S2(j) "-+ S2(j) .  N '  denotes the transposed of N. 

and 
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T h e  coeff ic ient  /~q in (4.7) is g iven  by 

cos (q  + 6) - t a n h  K 2 - cos  q -  t a n h  K * -  ( t a n h / ( 2 -  cos  ~ - 1) 

/3q = s in(q  + 6) - t a n h  K 2 '  sin q - t a n h  K * .  t a n h  K2.  sin 

579 

In  the  H a m i l t o n i a n  l imi t  it reduces  to 

/~q = c tg (q  + 6)  = 
1 + 2  cos q 

2 sin q 

wi th  2 = K 2 / K * .  This  c o r r e s p o n d s  to Eq.  (C.2)  of  ref. 10. 
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